本文共 3497 字,大约阅读时间需要 11 分钟。
为了解决这个问题,我们需要判断狗狗是否能够在指定的时间T到达迷宫中的门。迷宫中的每个位置可以用0或1表示,奇偶性不同的位置相邻。狗狗只能在特定时间T到达门,且每秒只能移动一次,不能重复经过任何一个格子。
问题分析:狗狗需要在特定时间T到达门,且路径必须符合奇偶性条件。奇偶性剪枝方法可以帮助我们判断是否能到达目标位置。起点和终点的奇偶性决定了狗狗是否能在奇数或偶数步到达目标位置。
广度优先搜索(BFS):使用BFS遍历迷宫,记录每个位置和步数,确保路径不重复。同时,检查每一步是否满足奇偶性条件。
奇偶性检查:起点和终点的奇偶性决定了狗狗到达终点的步数必须是奇数或偶数。BFS中每一步生成新状态时,检查是否满足奇偶性条件。
#include#include using namespace std;int n, m, t;char maze[11][11]; // 1-based indexingint startx, starty, endx, endy;bool flag = false;int dx[] = {0, 0, 1, -1};int dy[] = {1, -1, 0, 0};void dfs(int x, int y, int step) { if (flag) return; if (x == endx && y == endy && step == t) { flag = true; return; } if (step > t) return; for (int k = 0; k < 4; ++k) { int nx = x + dx[k]; int ny = y + dy[k]; if (nx < 1 || nx > n || ny < 1 || ny > m) continue; if (maze[nx][ny] == 'X') continue; int required_step = step + 1; int start_odd = (startx + starty) % 2; int end_odd = (endx + endy) % 2; if ((start_odd == end_odd && (required_step % 2 != 0)) || (start_odd != end_odd && (required_step % 2 == 0))) { continue; } if (visited[nx][ny][required_step]) continue; visited[nx][ny][required_step] = true; dfs(nx, ny, required_step); }}int main() { while (true) { cin >> n >> m >> t; if (n == 0 && m == 0 && t == 0) break; for (int i = 1; i <= n; ++i) { string s; cin >> s; for (int j = 1; j <= m; ++j) { maze[i][j] = s[j-1]; if (maze[i][j] == 'S') { startx = i; starty = j; } else if (maze[i][j] == 'D') { endx = i; endy = j; } } } int start_odd = (startx + starty) % 2; int end_odd = (endx + endy) % 2; bool found = false; bool visited[n+1][m+1][t+2]; for (int x = 1; x <= n; ++x) { for (int y = 1; y <= m; ++y) { for (int step = 0; step <= t; ++step) { visited[x][y][step] = false; } } } queue > q; q.push({startx, starty, 0}); visited[startx][starty][0] = true; while (!q.empty()) { auto current = q.front(); q.pop(); int x = current.first, y = current.second, step = current.third; if (x == endx && y == endy && step == t) { found = true; break; } for (int k = 0; k < 4; ++k) { int nx = x + dx[k]; int ny = y + dy[k]; if (nx < 1 || nx > n || ny < 1 || ny > m) continue; if (maze[nx][ny] == 'X') continue; int required_step = step + 1; if ((start_odd == end_odd && (required_step % 2 != 0)) || (start_odd != end_odd && (required_step % 2 == 0))) { continue; } if (visited[nx][ny][required_step]) continue; visited[nx][ny][required_step] = true; q.push({nx, ny, required_step}); } } if (found) { cout << "YES"; } else { cout << "NO"; } }}
转载地址:http://ccnh.baihongyu.com/